В перспективе он позволит повысить урожайность и качество плодовых культур на сельскохозяйственных предприятиях.
В 2023 году сельское хозяйство включили в число приоритетных отраслей экономики России для внедрения искусственного интеллекта (ИИ). Это обусловлено тем, что его использование, например, на предприятиях по растениеводству, может принести значительные выгоды. Для компаний это обеспечит увеличение производительности, снижение издержек и улучшенную конкурентоспособность, а для потребителей – высокое качество продукции и более доступные цены.
Сегодня ИИ обеспечивает прогнозирование урожайности и улучшение качества посевов, учитывая метеопрогноз и анализируя большие объёмы данных о состоянии почвы и растений. Или, например, с помощью Интернета вещей ИИ позволяет проводить мониторинг состояния плодовых культур и почвы, что обеспечивает своевременное выявление проблем. Кроме того, машинное обучение позволяет автоматизировать такие работы, как контроль над системой полива, а также сортировка и упаковка урожая.
Однако, несмотря на все преимущества использования ИИ в сельском хозяйстве, процесс его внедрения в отечественные предприятия идёт очень медленно. Одной из причин этого является беспокойство компаний о том, что на переобучение кадров и покупку самих инноваций потребуется большое количество денежных затрат. Именно поэтому необходимо создание таких разработок для повышения эффективности производства и качества продукции на основе ИИ, которые будут относительно дешёвыми и простыми в эксплуатации.
«Совместно с коллегами из Индии мы разработали прототип интеллектуальной системы автоматизации в сельском хозяйстве. С нашей стороны была предложена модель на основе машинного обучения для прогнозирования количества осадков и создана нейросетевая модель для определения свежести фруктов (бананов, яблок, апельсинов и т.д.). В том числе, мы закончили работу над пользовательским интерфейсом приложения на Android для управления данной системой», - рассказал Национальному аграрному агентству доцент кафедры автоматики и процессов управления СПбГЭТУ «ЛЭТИ» Вячеслав Викторович Гульванский.
В прототип интеллектуальной системы входит созданная учёными ЛЭТИ модель на основе машинного обучения для прогнозирования осадков, которая позволит сельхозработникам использовать дождевую воду для полива плодовых культур. Нейросетевая модель для диагностики свежести фруктов способна определять уровень спелости (спелое, не очень спелое, не гнилое, гнилое) по их изображениям, которые можно будет получать, к примеру, с камер, установленных на конвейерах. Преимуществом данной системы является интегрированный интеллектуальный модуль для сбора данных, которые собираются в реальном времени от нескольких датчиков, устанавливаемых в различных местах поля с растениями. Датчики могут определять объёмное содержание воды в почве, температуру и относительную влажность, а также обнаружить те вещества, которые оказывают негативное влияние на почвенные процессы (например, аммиак, оксиды азота, бензол, табачный дым, углекислый газ и др.). Так, с помощью данных разработок можно проводить мониторинг состояния почвы и качества воздуха в районах посевов, что обеспечит своевременное решение проблем. «В перспективе интеллектуальная система поможет в мониторинге состояния плодовых культур во время их выращивания, а также в определении их свежести на конвейерах или при сборе/сортировке с точностью свыше 90% на сельскохозяйственных предприятиях», - отметил Гульванский.
Учёные продолжают работу над совершенствованием разработанного прототипа. В будущем они планируют повысить её точность, а также разработать специальное приложение, через которое можно будет дистанционно управлять интеллектуальной системой и вести учёт на основании интеллектуального анализа, логистики и прочее.